CMSC 426 Principles of Computer Security

Introduction to Cryptology

1

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

Exam!!!

Hope to get them graded before next class
 (No promises, though!)

Any Questions from Last Time?

Today's Topics

- Introduction to crypto
 Ciphers
- Block ciphers
 - DES
 - 3DES
 - AES

Crypto Definitions

- Cryptography
 - "Hidden writing"
 - Creation and use of secret codes and data-related security measures
- Cryptanalysis
 - Theory and practice of "breaking" cryptographic protocols
 - "Breaking" means recovering protected text/bypassing security

Cryptology

- The study of coded messages
- Scientific study of codes: creating, using, analyzing, "breaking"

Encryption Types

- Encryption
 - Turning plain text into encrypted, "protected" text
- Decryption
 - Returning encrypted text to a readable, plain text state
- Symmetric Encryption
 - Uses the same key for encryption and decryption
- Asymmetric Encryption
 - Uses different keys for encryption and decryption

Symmetric Encryption

Components of Symmetric Encryption

- Plaintext
- Ciphertext
- Encryption algorithm
- Secret key
- Decryption algorithm
- Example: Vigenère cipher
 - "ATTACK AT DAWN" with "DOG" as the keyword
 - Ciphertext is "DHZDQQ DH JDKT"

Historical Ciphers (Algorithms)

- Caesar cipher
 - "Rotation" of the alphabet
- Atbash cipher
 - "Reversal" of the alphabet
- Keyword cipher
 - □ Keyword "begins" the alphabet, rest follows in order
 - Cryptography": CRYPTOGAHBDEFIJKLMNQSUVWXZ
- Vigenère cipher
 - Keyword is repeated, and is used to shift plaintext into ciphertext

Substitution Cipher Example

- Assume an "alphabet" of 38 characters: A-Z, 0-9, "", and .
- The substitution cipher is random in this case there is no keyword or simple reversal/shift of the alphabet
 - □ PX2LOB.1MWGSU0V5H6TYNF9K IA7QO3ZJRE4CD8

What is the plaintext, ciphertext, encryption algorithm, secret key, and decryption algorithm in this case?

Substitution Cipher Example

- Plaintext
- Ciphertext
 - Both are a message written in the 38-character alphabet
- Encryption algorithm
 - Application of the substitution cipher to the original message
- Secret Key
 - The substitution ciphered alphabet
- Decryption algorithm
 - Application of the inverse of the substitution cipher

Block Ciphers (Symmetric Block Encryption)

Block Ciphers

- Process the plaintext in fixed-size "blocks" (hence the name)
- Ciphertext produced is of blocks of equal size
- Block ciphers are symmetric algorithms
 Key remains the same for encryption and decryption
 However, two separate algorithms for en/decryption

Most commonly-used algorithms are DES, 3DES, and AES

Block Cipher Algorithms

- Sequence of rounds, made of permutations and substitutions
 Each round has its own unique subkey value, derived from the key
- DES and 3DES both use a Feistel network structure
 - Basic encryption and decryption algorithm are the same
 - Only difference is the order in which subkeys are applied
 - 16 rounds of en/decryption
 - Makes use of XOR and substitution

Components of Block Ciphers

Block size

Size in bits of a plaintext/ciphertext block (commonly 128 bits)

Key size

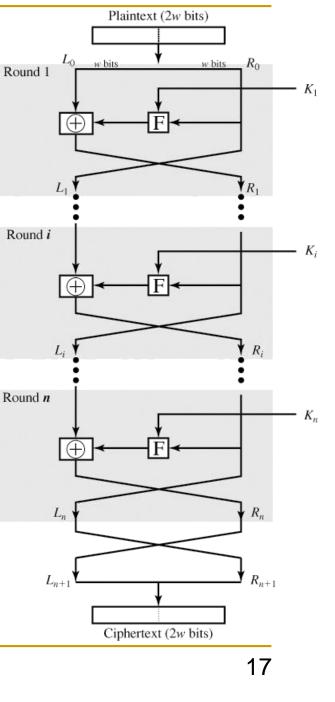
□ Size in bits of the key (commonly 128 bits)

Round function

Basic encryption function; iterated to form the encryption algorithm

Number of rounds

The number of iterations of the round function

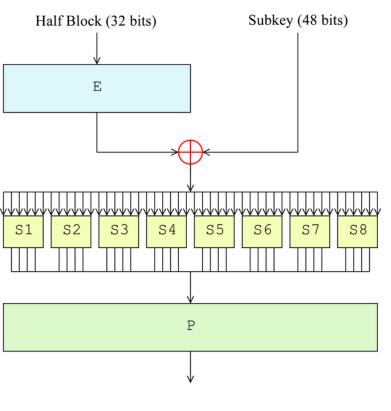

Subkey algorithm

Algorithm that expands the key into multiple round keys

Feistel Networks

- Iterative structure used in the DES and 3DES algorithms
 - Split 64 bits of input into right and left blocks
 - Apply Feistel function to the right half of the data
 - XOR it using the left half of the data
 - Swap the two blocks for the next round
 - Each of the 16 rounds is identical
 - (Which is why we swap the data's sides)
 - Only difference is the subkey used in the Feistel function

Image taken from Computer Security (Stallings & Brown)



Round 1

Feistel Function

- Consists of four stages, done on 32 bits of data
- <u>Expansion</u>: 32 bits is expanded to 48 bits (eight 6 bit pieces, which each contain a copy of the adjacent bit on each side)
- Key mixing: XOR'd with 48-bit subkey
- <u>Substitution</u>: divided into eight 6 bit pieces again, which are processed by the substitution boxes (S-box)
 - □ Turns 6 bits in 4 bits according to a non-linear transformation (provided by a lookup table)
 - Core component of the security of DES; without these, it would be trivial to break
- <u>Permutation</u>: outputs are rearranged according to a fixed permutation, so that the same bits don't go through the same substitution box again together

Image and information taken from https://en.wikipedia.org/wiki/Data_Encryption_Standard

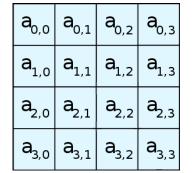
DES (Data Encryption Standard)

- Blocks are 64 bits
- Key is 56 bits
 - Actually 64 bits, but every 8th bit is a parity bit
- Algorithm itself is very secure
 - Very well-studied, and no reported fatal weaknesses
- Key size is woefully small
 - Only 72,000,000,000,000 possible keys
 - Can be brute-forced by a powerful machine in about an hour
- Adopted in 1977, but not used widely since the 90s

Triple DES (or 3DES)

- Uses 3 keys, for a total key size of 168 bits
 - □ Either two or three independent keys, depending on implementation
- To encrypt, it applies the original DES algorithm as follows:
 - Encrypt with key 1
 - Decrypt with key 2
 - Encrypt with key 3
 - If only two keys used, duplicate is used as key 1 and key 3)
- Three times as slow as DES... not good for large encryption jobs

AES (Advanced Encryption Standard)


All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Advanced Encryption Standard

- AES is also a block cipher, but does not use Feistel networks
 - Instead of splitting data in half and using one half to modify the other, AES processes the entire data block in parallel
- Block length is 128 bits, and key can be 128, 192, or 256 bits
 - □ For purposes of this class, we'll assume the key is always 128 bits
 - With 128 bits, this means that AES performs 10 rounds
- Decryption is still performed with keys applied in reverse
 - But encryption and decryption algorithms are not identical as in DES

AES Algorithm Overview

 128 bits of input are represented as a 4 by 4 array of bytes

Four different stages are performed in each round

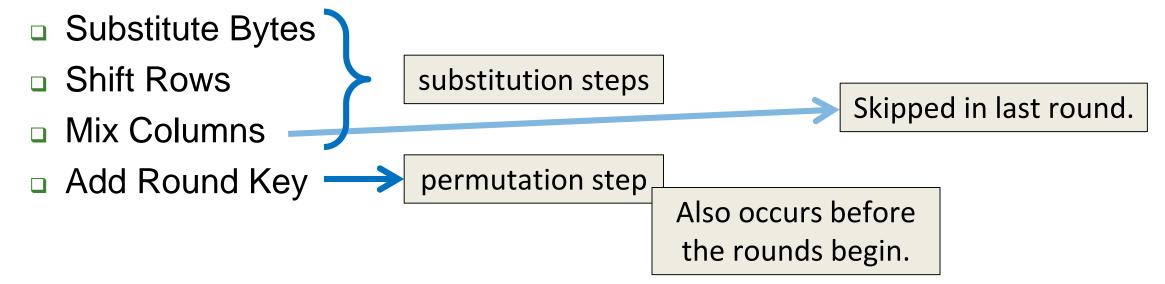
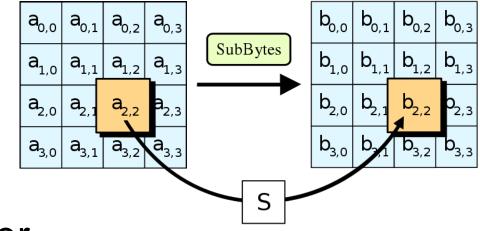



Image and information taken from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Substitute Bytes

 Uses an S-box to perform a table lookup that allows for a byte-by-byte substitution of the block

- Provides the non-linearity in the cipher
 - S-box is derived based on information from the key, using complex math we won't cover in this class
 - (Multiplicative inverse, affine transformation, etc.)
 - When <u>de</u>crypting, this is the step that differs, creating a different, "inverse" S-box

Image and information taken from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Shift Rows

- Each row is shifted by an offset
 - This means that each column now contains information from each row

 This prevents the columns in the 4 by 4 array from being encrypted together throughout all the rounds

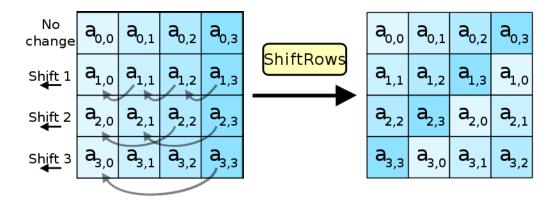
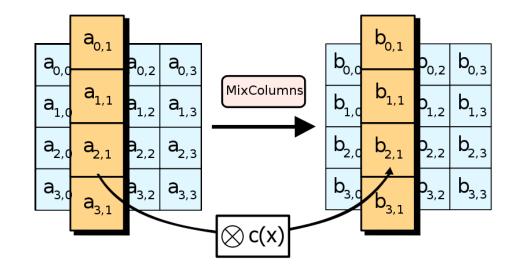


Image and information taken from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard


Mix Columns

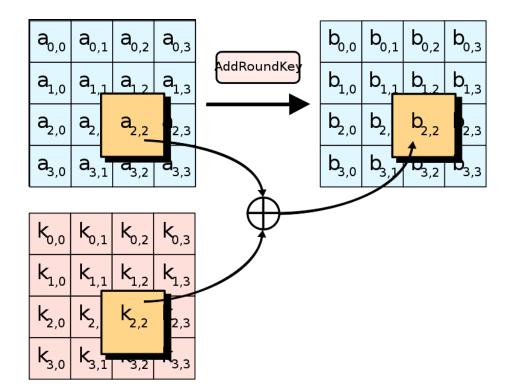
 Each column is altered, taking in the four bytes of the column, and outputting four bytes

- Each input byte affects all four output bytes (more math)
- This step does not occur in the final round of the algorithm

Image and information taken from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

$$egin{bmatrix} b_{0,j}\ b_{1,j}\ b_{2,j}\ b_{3,j} \end{bmatrix} = egin{bmatrix} 2 & 3 & 1 & 1\ 1 & 2 & 3 & 1\ 1 & 1 & 2 & 3\ 3 & 1 & 1 & 2 \end{bmatrix} egin{bmatrix} a_{0,j}\ a_{1,j}\ a_{2,j}\ a_{2,j}\ a_{3,j} \end{bmatrix} \qquad 0 \leq j \leq 3$$


Add Round Key

- Before the rounds begin, the original 128 bit key is expanded into an array of subkeys for each round
- Simple bitwise XOR of the current block with that round's subkey

 This stage also occurs initially, before the rounds have properly begun

Image and information taken from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

Paper 2&3 and Homework 2 will be released later today
 Homework 2 will be due next Wednesday (17th)
 Paper 2&3 will be due October 24th

Lab 2 is due next Wednesday (17th)