CMSC 426
 Principles of Computer Security
 Introduction to Cryptology

Last Class We Covered

- Exam!!!
- Hope to get them graded before next class
- (No promises, though!)

Any Questions from Last Time?

Today's Topics

- Introduction to crypto
- Ciphers
- Block ciphers
- DES
- 3DES
- AES

Crypto Definitions

Crypto-

- Cryptography
- "Hidden writing"
- Creation and use of secret codes and data-related security measures
- Cryptanalysis
- Theory and practice of "breaking" cryptographic protocols
- "Breaking" means recovering protected text/bypassing security
- Cryptology
- The study of coded messages
- Scientific study of codes: creating, using, analyzing, "breaking"

Encryption Types

- Encryption
- Turning plain text into encrypted, "protected" text
- Decryption
- Returning encrypted text to a readable, plain text state
- Symmetric Encryption
- Uses the same key for encryption and decryption
- Asymmetric Encryption
- Uses different keys for encryption and decryption

Symmetric Encryption

Components of Symmetric Encryption

- Plaintext
- Ciphertext
- Encryption algorithm
- Secret key
- Decryption algorithm
- Example: Vigenère cipher
- "ATTACK AT DAWN" with "DOG" as the keyword
- Ciphertext is "DHZDQQ DH JDKT"

Historical Ciphers (Algorithms)

- Caesar cipher
- "Rotation" of the alphabet
- Atbash cipher
- "Reversal" of the alphabet
- Keyword cipher
- Keyword "begins" the alphabet, rest follows in order
- "Cryptography": CRYPTOGAHBDEFIJKLMNQSUVWXZ
- Vigenère cipher
- Keyword is repeated, and is used to shift plaintext into ciphertext

Substitution Cipher Example

- Assume an "alphabet" of 38 characters: A-Z, 0-9, " ", and .
- The substitution cipher is random in this case - there is no keyword or simple reversal/shift of the alphabet
- PX2LOB.1MWGSUOV5H6TYNF9K IA7QO3ZJRE4CD8
- What is the plaintext, ciphertext, encryption algorithm, secret key, and decryption algorithm in this case?

Substitution Cipher Example

- Plaintext
- Ciphertext
- Both are a message written in the 38-character alphabet
- Encryption algorithm
- Application of the substitution cipher to the original message
- Secret Key
- The substitution ciphered alphabet
- Decryption algorithm
- Application of the inverse of the substitution cipher

Block Ciphers (Symmetric Block Encryption)

Block Ciphers

- Process the plaintext in fixed-size "blocks" (hence the name)
- Ciphertext produced is of blocks of equal size
- Block ciphers are symmetric algorithms
- Key remains the same for encryption and decryption
- However, two separate algorithms for en/decryption
- Most commonly-used algorithms are DES, 3DES, and AES

Block Cipher Algorithms

- Sequence of rounds, made of permutations and substitutions
- Each round has its own unique subkey value, derived from the key
- DES and 3DES both use a Feistel network structure
- Basic encryption and decryption algorithm are the same
- Only difference is the order in which subkeys are applied
- 16 rounds of en/decryption
- Makes use of XOR and substitution

Components of Block Ciphers

- Block size
- Size in bits of a plaintext/ciphertext block (commonly 128 bits)
- Key size
- Size in bits of the key (commonly 128 bits)
- Round function
- Basic encryption function; iterated to form the encryption algorithm
- Number of rounds
- The number of iterations of the round function
- Subkey algorithm
- Algorithm that expands the key into multiple round keys

Feistel Networks

- Iterative structure used in the DES and 3DES algorithms
- Split 64 bits of input into right and left blocks
- Apply Feistel function to the right half of the data
- XOR it using the left half of the data
- Swap the two blocks for the next round
- Each of the 16 rounds is identical
- (Which is why we swap the data's sides)
- Only difference is the subkey used in the Feistel function

Feistel Function

- Consists of four stages, done on 32 bits of data
- Expansion: 32 bits is expanded to 48 bits (eight 6 bit pieces, which each contain a copy of the adjacent bit on each side)

- Key mixing: XOR'd with 48-bit subkey
- Substitution: divided into eight 6 bit pieces again, which are processed by the substitution boxes (S-box)
- Turns 6 bits in 4 bits according to a non-linear transformation (provided by a lookup table)
- Core component of the security of DES; without these, it would be trivial to break
- Permutation: outputs are rearranged according to a fixed permutation, so that the same bits don't go through the same substitution box again together

DES (Data Encryption Standard)

- Blocks are 64 bits
- Key is 56 bits
- Actually 64 bits, but every 8th bit is a parity bit
- Algorithm itself is very secure
- Very well-studied, and no reported fatal weaknesses
- Key size is woefully small
- Only 72,000,000,000,000,000 possible keys
- Can be brute-forced by a powerful machine in about an hour
- Adopted in 1977, but not used widely since the 90s

Triple DES (or 3DES)

- Uses 3 keys, for a total key size of 168 bits
- Either two or three independent keys, depending on implementation
- To encrypt, it applies the original DES algorithm as follows:
- Encrypt with key 1
- Decrypt with key 2
- Encrypt with key 3
- (If only two keys used, duplicate is used as key 1 and key 3)
- Three times as slow as DES... not good for large encryption jobs

AES (Advanced Encryption Standard)

Advanced Encryption Standard

- AES is also a block cipher, but does not use Feistel networks
- Instead of splitting data in half and using one half to modify the other, AES processes the entire data block in parallel
- Block length is 128 bits, and key can be 128, 192, or 256 bits
- For purposes of this class, we'll assume the key is always 128 bits
- With 128 bits, this means that AES performs 10 rounds
- Decryption is still performed with keys applied in reverse
- But encryption and decryption algorithms are not identical as in DES

AES Algorithm Overview

- 128 bits of input are represented as a 4 by 4 array of bytes

| $a_{0,0}$ | $a_{0,1}$ | $a_{0,2}$ | $a_{0,3}$ |
| :--- | :--- | :--- | :--- | :--- |
| $a_{1,0}$ | $a_{1,1}$ | $a_{1,2}$ | $a_{1,3}$ |
| $a_{2,0}$ | $a_{2,1}$ | $a_{2,2}$ | $a_{2,3}$ |
| $a_{3,0}$ | $a_{3,1}$ | $a_{3,2}$ | $a_{3,3}$ |

- Four different stages are performed in each round
- Substitute Bytes
- Shift Rows
substitution steps
Skipped in last round.
- Mix Columns
- Add Round Key

Also occurs before the rounds begin.

Substitute Bytes

- Uses an S-box to perform a table lookup that allows for a byte-by-byte substitution of the block

- Provides the non-linearity in the cipher
- S-box is derived based on information from the key, using complex math we won't cover in this class
- (Multiplicative inverse, affine transformation, etc.)
- When decrypting, this is the step that differs, creating a different, "inverse" S-box

Shift Rows

- Each row is shifted by an offset
- This means that each column now contains information from each row

- This prevents the columns in the 4 by 4 array from being encrypted together throughout all the rounds

Mix Columns

- Each column is altered, taking in the four bytes of the column, and outputting four bytes

- Each input byte affects all four output bytes (more math)
- This step does not occur in the final round of the algorithm

$$
\left[\begin{array}{l}
b_{0, j} \\
b_{1, j} \\
b_{2, j} \\
b_{3, j}
\end{array}\right]=\left[\begin{array}{llll}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
a_{0, j} \\
a_{1, j} \\
a_{2, j} \\
a_{3, j}
\end{array}\right] \quad 0 \leq j \leq 3
$$

Add Round Key

- Before the rounds begin, the original 128 bit key is expanded into an array of subkeys for each round
- Simple bitwise XOR of the current block with that round's subkey

- This stage also occurs initially, before the rounds have properly begun

Announcements

- Paper 2\&3 and Homework 2 will be released later today
- Homework 2 will be due next Wednesday (17th)
- Paper $2 \& 3$ will be due October 24th
- Lab 2 is due next Wednesday (17th)

